
Noisy Interactive Graph Search
Qianhao Cong

Department of Industrial Systems

Engineering and Management

National University of Singapore

cong_qianhao@u.nus.edu

Jing Tang
∗

The Hong Kong University of Science

and Technology (Guangzhou)

The Hong Kong Uni. of Sci. and Tech.

jingtang@ust.hk

Kai Han

School of Computer Science and

Technology

Soochow University

hankai@suda.edu.cn

Yuming Huang

Department of Industrial Systems

Engineering and Management

National University of Singapore

huangyuming@u.nus.edu

Lei Chen

The Hong Kong University of Science

and Technology (Guangzhou)

The Hong Kong Uni. of Sci. and Tech.

leichen@ust.hk

Yeow Meng Chee

Department of Industrial Systems

Engineering and Management

National University of Singapore

ymchee@nus.edu.sg

ABSTRACT
The interactive graph search (IGS) problem aims to locate an ini-

tially unknown target node leveraging human intelligence. In IGS,

we can gradually find the target node by sequentially asking hu-

mans some reachability queries like “is the target node reachable

from a given node 𝑥?”. However, human workers may make mis-

takes when answering these queries. Motivated by this concern,

in this paper, we study a noisy version of the IGS problem. Our

objective in this problem is to minimize the query complexity while

ensuring accuracy. We propose a method to select the query node

such that we can push the search process as much as possible and

an online method to infer which node is the target after collect-

ing a new answer. By rigorous theoretical analysis, we show that

the query complexity of our approach is near-optimal up to a con-

stant factor. The extensive experiments on two real datasets also

demonstrate the superiorities of our approach.

CCS CONCEPTS
• Information systems→ Crowdsourcing; • Theory of compu-
tation→ Graph algorithms analysis.

KEYWORDS
Crowdsourcing; Interactive Graph Search; Algorithms

ACM Reference Format:
Qianhao Cong, Jing Tang, Kai Han, Yuming Huang, Lei Chen, and Yeow

Meng Chee. 2022. Noisy Interactive Graph Search. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD ’22), August 14–18, 2022, Washington DC. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/XXXXXX.XXXXXX

∗
Corresponding author: Jing Tang.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington DC
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/XXXXXX.XXXXXX

1 INTRODUCTION
Crowdsourcing has been a popular technique to address the prob-

lems that are hard to solve by computer alone. The crowdsourcing

platforms, such as Amazon’s Mechanical Turk and CrowdFlower,

allow users to set up human-aided tasks so that the crowd workers

can solve them in exchange for rewards. By the crowdsourcing

platforms, one can perform some tasks that are hard for computers

but easy for humans at a larger scale under lower cost, such as

data labeling [23, 26, 45], data collection [16, 33, 48], data mining

[1, 12], data filtering and cleaning [30, 32, 44], and many other tasks

[9, 13, 18, 34, 37].

Among these tasks, data labeling is perhaps the most popular

one, due to the fast development of machine learning techniques

and their great need for labeled datasets. However, creating datasets

is a burdensome task, especially for the datasets with complex struc-

tures and underlying hierarchies, such as ImageNet and Campus3D

[10, 21]. Although datasets of this kind inspire many new machine

learning methods and algorithms, generating them is still an expen-

sive and challenging task. In the traditional approaches, one has to

employ many experts and spend a long time labeling all the data.

These experts are required to be familiar with the whole hierarchy,

which is very challenging and even impractical when the hierarchy

is extremely large (e.g., the hierarchy of ImageNet has more than

20,000 nodes).

Crowdsourcing techniques can help to generate this kind of

dataset at a lower cost. The key task of labeling data according

to a hierarchy is to find the deepest node that best describes a

certain object. Based on this observation, Tao et al. [35] initiated

the interactive graph search (IGS) problem recently. They model

this task as a problem of locating a (hidden) target node, i.e., the

deepest suitable node, in the given hierarchy by interactive queries.

Specifically, the task is to locate the target by several rounds of

reachability queries. In each round, they select a node 𝑥 from the

graph and ask “is the target node reachable from node 𝑥?”. By

collecting answers from the crowd, the pool of candidate nodes

can be gradually narrowed down until the target node is finally

identified. The goal of the IGS problem is to locate the target node

using aminimumnumber of queries, since crowdsourcing platforms

usually charge a flat fee for each query.

Let us consider an example task of acquiring the label of an image

via crowdsourcing given the hierarchy shown in Figure 1. Suppose

https://orcid.org/0000-0002-0785-707X
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

KDD ’22, August 14–18, 2022, Washington DC Qianhao Cong, Jing Tang, Kai Han, Yuming Huang, Lei Chen, and Yeow Meng Chee

Vehicle

Car

Honda

Animal

Cat Family Dog Family

Lion PumaMercedes Nissan Tiger Dog Wolf

Ship

Figure 1: Example Hierarchy

that we are given the image of a honda car.We do not knowwhat the

picture shows and try to identify the label by showing the picture to

the workers and asking the question “is the image a vehicle?”. Since
the edges in the hierarchy represent concept-instance relationships,

e.g., car and ship are instances of vehicle, this question is equivalent

to asking whether the node corresponding to vehicle can reach the

hidden target node honda by a directed path. For this query, we

may get a yes answer from the workers, and then continue to ask

“is the image a car?” and “is the image a honda?” sequentially. If the
workers answer correctly, we would get two yes answers again and

finally label the image as honda. Note that although the vehicle and
car also correctly describe the image, they are not considered as

the target, since honda is the deepest node with the most suitable

concept. Similarly, if we are given an image showing a vehicle but
neither a car nor a ship, e.g., an airplane, we may ask “is the image

a vehicle?”, “is the image a car?”, and “is the image a ship”. The
workers would answer yes, no, and no respectively, and then we

can label the image as a vehicle. Note that, in the IGS problem, the

tasks are decomposed into a set of queries with binary answers that

can be easily addressed by human workers. Therefore, the workers

do not have to be familiar with the whole hierarchy.

The key challenge in the IGS problem is to decide which node to

query in each round. Tao et al. [35] address this problem utilizing

heavy-path decomposition and binary search on the heavy-paths.

Following their work, some variants of the IGS problem are studied

in the literature. Li et al. [23] investigate how to locate the target

node by multiple-choice queries. Zhu et al. [47] consider a budget-

constrained IGS problem, where only a limited number of queries

are allowed and multiple target nodes may exist in the input hierar-

chy. However, all the existing proposals assume that the answers to

reachability queries are obtained through a reliable oracle without

any errors. In practice, the queries are typically answered by hu-

man workers on the crowdsourcing platform, and these workers are

likely to make mistakes since they are not experts. This observation

motivates us to develop an effective algorithm that is robust against

noisy answers during the searching process of the IGS problem.

Specifically, in this paper we consider a noisy version of the

interactive graph search problem, where the workers may provide

a wrong answer to each query with a certain probability. Note that

the difficulty of queries on different nodes may vary significantly.

For example, “is this an animal” is much easier than “is this a puma”,
and “is this a car” is much easier than “is this a honda’. Therefore, we
consider a general case where different queries may have different

probabilities to be answered correctly.

The simplest method against noise is to repeat each query mul-

tiple times. For example, we may ask three different workers to

answer the same question, and regard the answer appearing more

than twice as the correct one. This method is also known as major-

ity voting and has been widely adopted in extensive applications

[9, 23, 34, 35, 46]. However, this method is not cost-effective, and it

is hard to control the accuracy guarantee. In this paper, we propose

a new method to improve cost-effectiveness while guaranteeing

any accuracy, through a Bayes approach that estimates the prob-

ability of each node in the hierarchy being the target node. More

specifically, in each round, we select the most informative node that

can increase the posterior probability of the target node as much

as possible, and returns a node as the target node once we have

enough confidence about it, i.e., its posterior probability exceeds the

accuracy requirement. By rigorous theoretical analysis, we show

that our method can achieve nearly optimal query complexity under

the desired accuracy.

Our contributions are listed as follows:

• We formally formulate the noisy interactive graph search prob-

lem (Section 2).

• We show how to compute the posterior probabilities based

on the Bayes method and how to infer which node is the

target. Our theoretical analysis also shows that the expected

probability for identifying the correct target is non-decreasing

by running a new query (Section 3).

• We propose a method to select the query node such that we

can increase the posterior probability of the target node as

much as possible. We show that our method achieves a near-

optimal (up to a constant factor) query complexity of 2 log𝛼 (𝑛)
in expectation, where 𝑛 is the number of nodes, and 𝛼 > 1 is a

parameter based on the accuracy requirement, the error rate

of queries, and the hierarchy structure (Section 4).

• Our extensive experiments demonstrate that our approach

can achieve the same accuracy level under much lower cost

compared to state-of-the-art algorithms (Section 5).

2 PROBLEM DEFINITION
In this paper, we study the noisy interactive graph search (OIGS)
problem. In this problem, we are given an unlabeled object and our

task is to find out its label by asking reachability questions with

(noisy) boolean answers, i.e., yes or no. Since the cost of crowd-

sourcing is usually determined by the number of questions asked,

our goal is to find a label using the minimum number of questions

while guaranteeing accuracy.

The OIGS problem is formally defined as follows. We are given a

categorization hierarchy abstracted as a tree 𝑇 = (𝑉 , 𝐸) with a set

𝑉 of 𝑛 nodes and a set 𝐸 of (𝑛−1) edges. Let 𝑑 denote the maximum

degree of any node in the hierarchy. Given such a hierarchy 𝑇 ,

the OIGS problem aims to find an initially unknown target node 𝑧

by several rounds of noisy reachability queries. In each round, we

interactively pick up a query node 𝑞 and ask “is the target node

𝑧 reachable from node 𝑞”. For any query node 𝑞 ∈ 𝑉 , the correct
answer of such a reachability query is boolean, denoted as 𝑟𝑒𝑎𝑐ℎ(𝑞),
which is given as follows.

𝑟𝑒𝑎𝑐ℎ(𝑞) :=
{
yes, if there is a directed path from 𝑞 to target 𝑧,

no, otherwise.

Noisy Interactive Graph Search KDD ’22, August 14–18, 2022, Washington DC

For convenience, for any two nodes 𝑢 and 𝑣 in 𝑇 , we use 𝑢 → 𝑣 to

denote that 𝑢 can reach 𝑣 and use 𝑢 ̸→ 𝑣 to denote that 𝑢 cannot

reach 𝑣 , respectively.

The result of these queries will be collected from human workers

and hence may introduce some noise. In this paper, we adopt the

one-coin noise model which is widely used in the literature [13,

43, 44, 46]. That is, the answer from the oracle can be wrong with

a certain probability. Since the difficulty of querying on different

nodes may vary significantly, as mentioned in the introduction,

we assume that the queries on different nodes have different error

rates. Specifically, for the query on node 𝑞, there is a parameter 𝑒𝑞
characterizing the error probability of such a query by considering

workers’ average ability in crowdsourcing. Let 𝑎 be the answer

from a human worker for the query 𝑞. Given an unknown target

𝑧, let 𝐼 (𝑞, 𝑎; 𝑧) be an indicator function representing whether the

answer 𝑎 of query 𝑞 is correct or not, i.e.,

𝐼 (𝑞, 𝑎; 𝑧) :=
{
1, if (𝑞 → 𝑧 ∧ 𝑎 = yes) or (𝑞 ̸→ 𝑧 ∧ 𝑎 = no),
0, otherwise.

(1)

Thus, the conditional probability of observing the result of (𝑞, 𝑎)
given that 𝑧 is the target is given by

P((𝑞, 𝑎) | 𝑧) =
{
1 − 𝑒𝑞, if 𝐼 (𝑞, 𝑎; 𝑧) = 1,

𝑒𝑞, otherwise.
(2)

In this paper, we consider that the queries are independent so that

the answer to a query only depends on the reachability and the

error probability, not influenced by other queries [13, 32, 37, 44].

We make the assumption of rationality [13, 37] such that there

does not exist malicious workers who deliberately make mistakes,

i.e., 𝑒𝑞 < 0.5 for every𝑞 ∈ 𝑉 . Following previouswork [8, 23, 47], we

consider that the target nodes follow an a-priori known distribution

where each node 𝑣 in the hierarchy is associated with a probability

P(𝑣) measuring the likelihood of 𝑣 being the target. In practice,

the a-priori distribution can be estimated by the online learning

method [8, 23], i.e., estimating the a-priori distribution by using the

distribution of the labeled data and updating it after each time we

get a new labeled object, or we can simply use the discrete uniform

distribution instead [47]. Due to query noise, we aim to identify

the target node with a high accuracy of at least 1 − 𝜀. The formal

definition of OIGS is given in the following:

Definition 1 (Noisy Interactive Graph Search). Given a tree
hierarchy 𝑇 = (𝑉 , 𝐸) and an (unknown) target node 𝑧 ∈ 𝑉 following
the a-priori known probability distribution P(·), OIGS asks for a query
strategy that can correctly locates 𝑧 with a probability of at least 1− 𝜀
under the minimum expected cost.

For the OIGS problem, the main challenges are two-fold: (i) how

to infer which node is the target given a set of queries and their

answers, and (ii) how to select the node to query based on the

information collected previously.

3 TARGET NODE INFERENCE
In this section, we infer the target node given a set of queries and

their corresponding answers, leveraging Bayes’ theorem. Moreover,

we show that the expected probability of identifying the correct

target is non-decreasing when running new queries. For ease of

reference, Table 1 lists the notations that we frequently use.

Table 1: Frequently Used Notations.

Notations Description

𝑇 = (𝑉 , 𝐸) a tree with node set 𝑉 and edge set 𝐸

𝑛 the number of nodes in 𝑇

𝑑 the maximum degree of nodes in 𝑇

𝑒𝑢 the error probability of query on node 𝑢

𝑇𝑢 a subtree of 𝑇 rooted at node 𝑢

(𝑞, 𝑎) a pair of query and its (boolean) answer

Q a set of query results Q = {(𝑞𝑖 , 𝑎𝑖) : 𝑖 = 1, 2, . . . }
𝜀 threshold of failure probability

3.1 Computing Posterior Probability
We measure the likelihood of a node being the target utilizing

Bayes’ theorem and choose the one with the highest posterior

probability given the information we have collected so far. More-

over, denote by Q a set of observations obtained from 𝑘 queries,

i.e., Q = {(𝑞1, 𝑎1), (𝑞2, 𝑎2), . . . , (𝑞𝑘 , 𝑎𝑘)}. Recall that the queries are
independent. Thus, the probability of observing Q conditioned on

𝑧 being the target can be computed by

P(Q | 𝑧) =
∏
(𝑞,𝑎) ∈Q

P((𝑞, 𝑎) | 𝑧) . (3)

As a result, given the prior probability P(𝑣) of node 𝑣 being the tar-

get for every node 𝑣 ∈ 𝑉 , the total probability P(Q) of Q occurring

is given by

P(Q) =
∑︁
𝑣∈𝑉
P(Q | 𝑣)P(𝑣) .

Finally, according to Bayes’ theorem, given the current information

Q collected, the posterior probability P(𝑢 | Q) of node 𝑢 being the

target can be calculated as follows,

P(𝑢 | Q) = P(Q | 𝑢)P(𝑢)
P(Q) =

P(Q | 𝑢)P(𝑢)∑
𝑣∈𝑉 P(Q | 𝑣)P(𝑣)

. (4)

Based on the posterior probability obtained via the above equation,

we return the node with the maximum likelihood (i.e., posterior

probability) as the guessed target.

After collecting the answer to the 𝑘-th query, we can directly

apply (4) to compute the posterior probability for every node being

the target from scratch in 𝑂 (𝑛𝑘) time. Alternatively, we can incre-

mentally update the posterior probability for every node based on

the posterior probability obtained just before asking the 𝑘-th query.

Specifically, consider a newly observed query result (𝑞, 𝑎) on top of

previously collected information Q. According to (4), for any node

𝑢 ∈ 𝑉 , we have

P(𝑢 | Q ∪ {(𝑞, 𝑎)}) = P(Q ∪ {(𝑞, 𝑎)} | 𝑢)P(𝑢)∑
𝑣∈𝑉 P(Q ∪ {(𝑞, 𝑎)} | 𝑣)P(𝑣)

.

In addition, by (3), we know that

P(Q ∪ {(𝑞, 𝑎)} | 𝑣) = P((𝑞, 𝑎) | 𝑣)P(Q | 𝑣) .

KDD ’22, August 14–18, 2022, Washington DC Qianhao Cong, Jing Tang, Kai Han, Yuming Huang, Lei Chen, and Yeow Meng Chee

Putting it together yields

P(𝑢 | Q ∪ {(𝑞, 𝑎)}) = P((𝑞, 𝑎) | 𝑢)P(Q | 𝑢)P(𝑢)∑
𝑣∈𝑉 P((𝑞, 𝑎) | 𝑣)P(Q | 𝑣)P(𝑣)

=
P((𝑞, 𝑎) | 𝑢)P(Q | 𝑢)P(𝑢)/P(Q)∑
𝑣∈𝑉 P((𝑞, 𝑎) | 𝑣)P(Q | 𝑣)P(𝑣)/P(Q)

=
P((𝑞, 𝑎) | 𝑢)P(𝑢 | Q)∑
𝑣∈𝑉 P((𝑞, 𝑎) | 𝑣)P(𝑣 | Q)

. (5)

It can be seen that, for each new query result (𝑞, 𝑎) on top of pre-

viously collected information Q, using (5) to update the posterior

probability of every node being the target just takes 𝑂 (𝑛) time,

which reduces a multiplicative factor of 𝑘 compared with that by

applying the naive calculation.

3.2 Monotonicity of Posterior Probability
By (1) and (2), for any node 𝑢 ∈ 𝑉 and any query outcome (𝑞, 𝑎),
we have

P((𝑞, 𝑎) | 𝑢) =


1 − 𝑒𝑞, if 𝑞 → 𝑢 ∧ 𝑎 = yes,
𝑒𝑞, if 𝑞 → 𝑢 ∧ 𝑎 = no,
𝑒𝑞, if 𝑞 ̸→ 𝑢 ∧ 𝑎 = yes,
1 − 𝑒𝑞, if 𝑞 ̸→ 𝑢 ∧ 𝑎 = no.

(6)

In addition, denote by 𝑇𝑞 the subtree of 𝑇 rooted at 𝑞 (i.e., consist-

ing of 𝑞 and all of its descendants in 𝑇) and by 𝑇∁
𝑞 = 𝑇 \ 𝑇𝑞 the

complement tree of 𝑇𝑞 . Let 𝜆(𝑞, 𝑎;𝑢,Q) be the multiplier in (5), i.e.,

𝜆(𝑞, 𝑎;𝑢,Q) :=



1−𝑒𝑞
(1−𝑒𝑞)P(𝑇𝑞 | Q)+𝑒𝑞P(𝑇∁

𝑞 | Q)
, if 𝑞 → 𝑢 ∧ 𝑎 = yes,

𝑒𝑞

𝑒𝑞P(𝑇𝑞 | Q)+(1−𝑒𝑞)P(𝑇∁
𝑞 | Q)

, if 𝑞 → 𝑢 ∧ 𝑎 = no,
𝑒𝑞

(1−𝑒𝑞)P(𝑇𝑞 | Q)+𝑒𝑞P(𝑇∁
𝑞 | Q)

, if 𝑞 ̸→ 𝑢 ∧ 𝑎 = yes,
1−𝑒𝑞

𝑒𝑞P(𝑇𝑞 | Q)+(1−𝑒𝑞)P(𝑇∁
𝑞 | Q)

, if 𝑞 ̸→ 𝑢 ∧ 𝑎 = no,

(7)

where P(𝑇𝑞 | Q) =
∑

𝑣∈𝑇𝑞 P(𝑣 | Q) and P(𝑇
∁
𝑞 | Q) = 1 − P(𝑇𝑞 | Q)

are the total posterior probabilities of the nodes in 𝑇𝑞 and 𝑇∁
𝑞 with

respect to Q, respectively. Then, (5) can be rewritten as

P(𝑢 | Q ∪ {(𝑞, 𝑎)}) = 𝜆(𝑞, 𝑎;𝑢,Q) · P(𝑢 | Q). (8)

Leveraging (8), we show that asking new queries never hurts with

respect to the expected posterior probability of the (unknown)

target node 𝑧.

Theorem 1. Given that the target node is 𝑧, for any new query 𝑞
on top of Q, we have

E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q] ≥ P(𝑧 | Q), (9)

where the expectation is over the randomness of query outcome 𝑋 .

Proof. We consider two scenarios with respect to the reachabil-

ity of 𝑞 to 𝑧, i.e., (i) 𝑧 ∈ 𝑇𝑞 (i.e., 𝑞 → 𝑧) and (ii) 𝑧 ∈ 𝑇∁
𝑞 (i.e., 𝑞 ̸→ 𝑧).

We first analyze case (i) that 𝑧 ∈ 𝑇𝑞 . According to (8), we have

E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q]

=
∑︁

𝑎∈{𝑦𝑒𝑠,𝑛𝑜 }

(
P((𝑞, 𝑎) | 𝑧) · 𝜆(𝑞, 𝑎; 𝑧,Q) · P(𝑧 | Q)

)
.

Using P((𝑞, 𝑎) | 𝑧) and 𝜆(𝑞, 𝑎; 𝑧,Q) in (6) and (7), we can get that

E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q]

=
(1 − 𝑒𝑞)2 · P(𝑧 | Q)

(1 − 𝑒𝑞)P(𝑇𝑞 | Q) + 𝑒𝑞P(𝑇∁
𝑞 | Q)

+
𝑒2𝑞 · P(𝑧 | Q)

𝑒𝑞P(𝑇𝑞 | Q) + (1 − 𝑒𝑞)P(𝑇∁
𝑞 | Q)

. (10)

In fact, for any 𝑥,𝑦 ∈ [0, 1], it holds that

(1 − 𝑥)2
(1 − 𝑥)𝑦 + 𝑥 (1 − 𝑦) +

𝑥2

𝑥𝑦 + (1 − 𝑥) (1 − 𝑦) − 1

=
(1 − 𝑥)2 − (1 − 𝑥) (𝑥 + 𝑦 − 2𝑥𝑦)

𝑥 + 𝑦 − 2𝑥𝑦 + 𝑥2 − 𝑥 (1 − 𝑥 − 𝑦 + 2𝑥𝑦)
1 − 𝑥 − 𝑦 + 2𝑥𝑦

=
(1 − 𝑥) (1 − 2𝑥) (1 − 𝑦)

𝑥 + 𝑦 − 2𝑥𝑦 − 𝑥 (1 − 2𝑥) (1 − 𝑦)
1 − 𝑥 − 𝑦 + 2𝑥𝑦

=
(1 − 2𝑥)2 (1 − 𝑦)2

(𝑥 + 𝑦 − 2𝑥𝑦) (1 − 𝑥 − 𝑦 + 2𝑥𝑦)

=
(1 − 2𝑥)2

𝑥 (1 − 𝑥) (1−𝑥𝑥 +
𝑦

1−𝑦) (
𝑥

1−𝑥 +
𝑦

1−𝑦)
≥ 0. (11)

Combining (10) and (11) by setting 𝑥 = 𝑒𝑞 and 𝑦 = P(𝑇𝑞 | Q) in (11)

gives rise to

E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q] − P(𝑧 | Q) ≥ 0.

The analysis for case (ii) that 𝑧 ∈ 𝑇∁
𝑞 is similar. That is,

E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q]

=
𝑒2𝑞 · P(𝑧 | Q)

(1 − 𝑒𝑞)P(𝑇𝑞 | Q) + 𝑒𝑞P(𝑇∁
𝑞 | Q)

+
(1 − 𝑒𝑞)2 · P(𝑧 | Q)

𝑒𝑞P(𝑇𝑞 | Q) + (1 − 𝑒𝑞)P(𝑇∁
𝑞 | Q)

. (12)

Combing (11) and (12) by setting 𝑥 = 𝑒𝑞 and 𝑦 = P(𝑇∁
𝑞 | Q) in (11)

immediately yields

E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q] − P(𝑧 | Q) ≥ 0.

This completes the proof. □

Theorem 1 implies that asking more questions never hurts in

expectation. In particular, it is trivial to verify that when 𝑒𝑞 < 0.5,

unless P(𝑇𝑞 | Q) = 1 (resp. P(𝑇∁
𝑞 | Q) = 1) such that 𝑧 is ensured

to be in 𝑇𝑞 (resp. 𝑇∁
𝑞) based on Q, the query on 𝑞 strictly increases

the posterior probability of 𝑧 in expectation.

4 QUERY SELECTION
In this section, we study the strategy of query selection in the OIGS

problem. Intuitively, we attempt to select the node that can increase

the posterior probability of the target node as much as possible.

With rigorous theoretical analysis, we show that our algorithm

achieves a query complexity of 2 log𝛼 (𝑛) in expectation, where

𝛼 > 1 is a constant determined by the hierarchy structure, the

query noise, and the allowed failure probability, as elaborated later.

Noisy Interactive Graph Search KDD ’22, August 14–18, 2022, Washington DC

Algorithm 1: OIGS
Input: an input tree 𝑇 , prior propability P(𝑣) and error rate

𝑒𝑣 for each node 𝑣 ∈ 𝑉 , failture threshold 𝜀;

Output: the correct target node with probability 1 − 𝜀;
1 Q ← ∅;
2 P(𝑣 | Q) ← P(𝑣) for every node 𝑣 ∈ 𝑉 ;

3 𝑝∗ ← max𝑣∈𝑉 P(𝑣 | Q);
4 while 𝑝∗ < 1 − 𝜀 do
5 𝑞 ← argmax𝑣∈𝑉 {min{𝑓 (𝑣 | Q), 𝑔(𝑣 | Q)}};
6 get the answer 𝑎 of query 𝑞 from a worker;

7 compute P((𝑞, 𝑎) | 𝑣) for every node 𝑣 ∈ 𝑉 based on (2);

8 compute 𝑝𝑠𝑢𝑚 ←
∑

𝑣∈𝑉 P((𝑞, 𝑎) | 𝑣)P(𝑣 | Q);
9 update P(𝑣 | Q ∪ {(𝑞, 𝑎)}) ← P((𝑞,𝑎) |𝑣)P(𝑣 | Q)

𝑝𝑠𝑢𝑚
for 𝑣 ∈ 𝑉 ;

10 update Q ← Q ∪ {(𝑞, 𝑎)};
11 update 𝑝∗ ← max𝑣∈𝑉 P(𝑣 | Q);
12 return argmax𝑣∈𝑉 P(𝑣 | Q);

Our query complexity is just within a factor of 2/log
2
(𝛼) compared

to the super lower bound of log
2
(𝑛).

4.1 Greedy Strategy
According to the analysis of E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q] in Theo-

rem 1, we define two functions 𝑓 (·) and 𝑔(·) for the query 𝑞 on top

of Q as follows, i.e.,

𝑓 (𝑞 | Q) :=
(1 − 2𝑒𝑞)2

𝑒𝑞 (1 − 𝑒𝑞)
(1−𝑒𝑞

𝑒𝑞
+ P(𝑇𝑞 | Q)
P(𝑇∁

𝑞 | Q)
) (𝑒𝑞

1−𝑒𝑞 +
P(𝑇𝑞 | Q)
P(𝑇∁

𝑞 | Q)
) + 1,

(13)

𝑔(𝑞 | Q) :=
(1 − 2𝑒𝑞)2

𝑒𝑞 (1 − 𝑒𝑞)
(1−𝑒𝑞

𝑒𝑞
+ P(𝑇

∁
𝑞 | Q)

P(𝑇𝑞 | Q)
) (𝑒𝑞

1−𝑒𝑞 +
P(𝑇∁

𝑞 | Q)
P(𝑇𝑞 | Q)

) + 1.
(14)

Then, we have

E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q] =
{
𝑓 (𝑞 | Q) · P(𝑧 | Q), if 𝑧 ∈ 𝑇𝑞,
𝑔(𝑞 | Q) · P(𝑧 | Q), otherwise.

Since we do not know whether the target node 𝑧 is reachable from

the selected node for query, we greedily choose 𝑞 that maximizes

the smaller of 𝑓 (𝑞 | Q) and 𝑔(𝑞 | Q). Formally,

𝑞 = argmax

𝑣∈𝑉
{min{𝑓 (𝑣 | Q), 𝑔(𝑣 | Q)}}.

Algorithm 1 gives the pseudocode of our greedy strategy based

on the above analysis. Specifically, in each round, it selects the

node that maximizes the multiplier min{𝑓 (𝑞 | Q), 𝑔(𝑞 | Q)} to
increase the expected posterior probability of the target 𝑧 (line 5).

Upon receiving the query outcome (line 6), it incrementally updates

the posterior probability (lines 7–9) and the maximum likelihood

(line 11) according to the method explained in Section 3.1. This

search process repeats until the maximum likelihood exceeds the

predefined threshold 1 − 𝜀, and then the node with the maximum

likelihood is returned as the guessed target (line 12).

4.2 Theoretical Guarantees
In what follows, we show that the expected number of queries

invoked by Algorithm 1 is nearly optimal. Specifically, it is evident

that 𝑓 (𝑞 | Q) decreases with the increasing of

P(𝑇𝑞 | Q)
P(𝑇∁

𝑞 | Q)
, while

𝑔(𝑞 | Q) increases with P(𝑇𝑞 | Q)
P(𝑇∁

𝑞 | Q)
. Reformulating (13) and (14), we

can get

𝑓 (𝑞 | Q) := (1 − 2𝑒𝑞)
(

1

P(𝑇𝑞 | Q)
P(𝑇∁

𝑞 | Q)
+ 𝑒𝑞

1−𝑒𝑞

− 1

P(𝑇𝑞 | Q)
P(𝑇∁

𝑞 | Q)
+ 1−𝑒𝑞

𝑒𝑞

)
+ 1,

𝑔(𝑞 | Q) := (1 − 2𝑒𝑞)
(

1

P(𝑇∁
𝑞 | Q)

P(𝑇𝑞 | Q) +
𝑒𝑞

1−𝑒𝑞

− 1

P(𝑇∁
𝑞 | Q)

P(𝑇𝑞 | Q) +
1−𝑒𝑞
𝑒𝑞

)
+ 1.

It is also evident to see that both of 𝑓 (𝑞 | Q) and 𝑔(𝑞 | Q)
decrease with the increasing of 𝑒𝑞 . Let 𝑒

∗
:= max𝑣∈𝑉 𝑒𝑣 be the

maximum error rate and

𝜌 (𝑞 | Q) := max

{
P(𝑇𝑞 | Q)
P(𝑇∁

𝑞 | Q)
,
P(𝑇∁

𝑞 | Q)
P(𝑇𝑞 | Q)

}
.

Then, we can get that

min{𝑓 (𝑞 | Q), 𝑔(𝑞 | Q)}

≥ (1 − 2𝑒∗)2

𝑒∗ (1 − 𝑒∗)
(
1−𝑒∗
𝑒∗ + 𝜌 (𝑞 | Q)

) (
𝑒∗

1−𝑒∗ + 𝜌 (𝑞 | Q)
) + 1 ≜ ℎ(𝑞 | Q).

As a result, we have

max

𝑞∈𝑉
{min{𝑓 (𝑞 | Q), 𝑔(𝑞 | Q)}} ≥ max

𝑞∈𝑉
{ℎ(𝑞 | Q)}}.

Next, we show a lower bound on the right hand side of the above

inequality. In particular, it is trivial to see that the solution to

min𝑞∈𝑉 {𝜌 (𝑞 | Q)}} is actually the solution tomax𝑞∈𝑉 {ℎ(𝑞 | Q)}}.
We give an upper bound on the optimum of the former.

Lemma 1. Given a tree𝑇 = (𝑉 , 𝐸) where each node 𝑣 is associated
with a weight 𝑝 (𝑣) such that

∑
𝑣∈𝑉 𝑝 (𝑣) = 1. For any subset 𝑆 of 𝑉 ,

let 𝑝 (𝑆) = ∑
𝑣∈𝑆 𝑝 (𝑣) denote the total weight of the nodes in 𝑆 . Then,

min

𝑣∈𝑉

{
max

{
𝑝 (𝑇𝑣)

1 − 𝑝 (𝑇𝑣)
,
1 − 𝑝 (𝑇𝑣)
𝑝 (𝑇𝑣)

}}
≤ 𝑑 + 𝑝∗

1 − 𝑝∗ ,

where 𝑇𝑣 is the subtree of 𝑇 rooted at 𝑣 , 𝑑 is the maximum degree of
the nodes in 𝑇 and 𝑝∗ = max𝑣 𝑝 (𝑣) is the maximum weight in 𝑇 .

Proof. It is trivial to see that the node𝑢 with theminimum value

of max

{
𝑝 (𝑇𝑢)

1−𝑝 (𝑇𝑢) ,
1−𝑝 (𝑇𝑢)
𝑝 (𝑇𝑢)

}
also minimizes max{𝑝 (𝑇𝑢), 1 − 𝑝 (𝑇𝑢)}

among all nodes in 𝑉 , i.e., for any 𝑣 ∈ 𝑉 ,

max{𝑝 (𝑇𝑢), 1 − 𝑝 (𝑇𝑢)} ≤ max{𝑝 (𝑇𝑣), 1 − 𝑝 (𝑇𝑣)}, (15)

or equivalently

min{𝑝 (𝑇𝑢), 1 − 𝑝 (𝑇𝑢)} ≥ min{𝑝 (𝑇𝑣), 1 − 𝑝 (𝑇𝑣)}. (16)

We first show that
𝑝 (𝑇𝑢)

1−𝑝 (𝑇𝑢) ≤
𝑑+𝑝∗
1−𝑝∗ . Without loss of generality,

for every child 𝑣 of 𝑢, we assume that 𝑝 (𝑇𝑣) < 𝑝 (𝑇𝑢) (otherwise
we can replace 𝑢 by 𝑣 as 𝑝 (𝑇𝑣) = 𝑝 (𝑇𝑢)). We note that 𝑝 (𝑇𝑣) < 0.5

(otherwise 0.5 ≤ 𝑝 (𝑇𝑣) < 𝑝 (𝑇𝑢), contradicting (15)). Then, for every
child 𝑣 of 𝑢, we have

𝑝 (𝑇𝑣) < max{𝑝 (𝑇𝑢), 1 − 𝑝 (𝑇𝑢)} ≤ 1 − 𝑝 (𝑇𝑣),

KDD ’22, August 14–18, 2022, Washington DC Qianhao Cong, Jing Tang, Kai Han, Yuming Huang, Lei Chen, and Yeow Meng Chee

where the second inequality is by (15). Hence, by (16), we have

𝑝 (𝑇𝑣) ≤ min{𝑝 (𝑇𝑢), 1 − 𝑝 (𝑇𝑢)}.
As a result,

𝑝 (𝑇𝑢) = 𝑝 (𝑢) +
∑︁

𝑣∈𝑐ℎ𝑖𝑙𝑑 (𝑢)
𝑝 (𝑇𝑣) ≤ 𝑝 (𝑢) + 𝑑 (1 − 𝑝 (𝑇𝑢)).

Thus,

𝑝 (𝑇𝑢) ≤
𝑝 (𝑢) + 𝑑
𝑑 + 1 , and 1 − 𝑝 (𝑇𝑢) ≥

1 − 𝑝 (𝑢)
𝑑 + 1 .

Putting it together gives rise to

𝑝 (𝑇𝑢)
1 − 𝑝 (𝑇𝑢)

≤ 𝑑 + 𝑝 (𝑢)
1 − 𝑝 (𝑢) ≤

𝑑 + 𝑝∗
1 − 𝑝∗ .

Next, we show that
1−𝑝 (𝑇𝑢)
𝑝 (𝑇𝑢) ≤

𝑑+𝑝∗
1−𝑝∗ . Denote by𝑤 the parent of

𝑢. Without loss of generality, we also assume that 𝑝 (𝑇𝑤) > 𝑝 (𝑇𝑢)
(otherwise we can replace 𝑢 by 𝑤 as 𝑝 (𝑇𝑤) = 𝑝 (𝑇𝑢)). Similarly,

by (15) and (16), we have

1 − 𝑝 (𝑇𝑤) < max{𝑝 (𝑇𝑢), 1 − 𝑝 (𝑇𝑢)} ≤ 𝑝 (𝑇𝑤),
1 − 𝑝 (𝑇𝑤) ≤ min{𝑝 (𝑇𝑢), 1 − 𝑝 (𝑇𝑢)}. (17)

Moreover, for any child 𝑣 of 𝑤 satisfying 𝑣 ≠ 𝑢, we show that

𝑝 (𝑇𝑣) ≤ 𝑝 (𝑇𝑢) unless 𝑝 (𝑇𝑣)+𝑝 (𝑇𝑢) = 1. Note that if 𝑝 (𝑇𝑣)+𝑝 (𝑇𝑢) =
1 and 𝑝 (𝑇𝑣) > 𝑝 (𝑇𝑢), then we can simply replace 𝑢 by 𝑣 . Suppose

by contradiction that there exists a child 𝑣 of𝑤 such that 𝑝 (𝑇𝑣) >
𝑝 (𝑇𝑢) and 𝑝 (𝑇𝑣) + 𝑝 (𝑇𝑢) < 1. We note that 𝑝 (𝑇𝑣) > 0.5 (otherwise

0.5 ≥ 𝑝 (𝑇𝑣) > 𝑝 (𝑇𝑢), contradicting (15)). Then, by (15), we must

have 1 − 𝑝 (𝑇𝑢) ≤ 𝑝 (𝑇𝑣), which contradicts 𝑝 (𝑇𝑢) + 𝑝 (𝑇𝑣) < 1.

Consequently, combining (17),

1−𝑝 (𝑇𝑢) = 1−𝑝 (𝑇𝑤)+𝑝 (𝑤)+
∑︁

𝑣∈𝑐ℎ𝑖𝑙𝑑 (𝑤)
𝑝 (𝑇𝑣)−𝑝 (𝑇𝑢) ≤ 𝑝 (𝑤)+𝑑𝑝 (𝑇𝑢) .

Hence,

𝑝 (𝑇𝑢) ≥
1 − 𝑝 (𝑤)
𝑑 + 1 , and 1 − 𝑝 (𝑇𝑢) ≤

𝑑 + 𝑝 (𝑤)
𝑑 + 1 .

Putting it together gives rise to

1 − 𝑝 (𝑇𝑢)
𝑝 (𝑇𝑢)

≤ 𝑑 + 𝑝 (𝑤)
1 − 𝑝 (𝑤) ≤

𝑑 + 𝑝∗
1 − 𝑝∗ .

This completes the proof. □

Now, we are ready to show that our greedy strategy selects a

query that can increase the expected posterior probability of the

correct target 𝑧 by a multiplicative factor of at least 𝛼 , where

𝛼 :=
(1 − 2𝑒∗)2

𝑒∗ (1 − 𝑒∗)
(
1−2𝑒∗
𝑒∗ +

𝑑+1
𝜀

) (
2𝑒∗−1
1−𝑒∗ +

𝑑+1
𝜀

) + 1. (18)

Theorem 2. The greedy strategy in Algorithm 1 selects a query 𝑞
on top of Q ensuring that

E[P(𝑧 | Q ∪ {(𝑞,𝑋)}) | Q] ≥ 𝛼 · P(𝑧 | Q), (19)

where 𝛼 is given in (18).

Proof. Recall that the greedy strategy selects a query 𝑞 on top

of Q ensuring that

E[𝜆(𝑞,𝑋 ; 𝑧,Q) | Q] ≥ max

𝑞′∈𝑉
{min{𝑓 (𝑞′ | Q), 𝑔(𝑞′ | Q)}},

According to the stopping rule of Algorithm 1, we know that 𝑝∗ <
1 − 𝜀 before it terminates. Using the result of Lemma 1, we have

min

𝑞′∈𝑉
{𝜌 (𝑞′ | Q)} ≤ 𝑑 + 1 − 𝜀

𝜀
.

Therefore, we can get that

max

𝑞′∈𝑉
{min{𝑓 (𝑞′ | Q), 𝑔(𝑞′ | Q)}} ≥ max

𝑞′∈𝑉
{ℎ(𝑞′ | Q)}

≥ (1 − 2𝑒∗)2

𝑒∗ (1 − 𝑒∗)
(
1−𝑒∗
𝑒∗ +

𝑑+1−𝜀
𝜀

) (
𝑒∗

1−𝑒∗ +
𝑑+1−𝜀

𝜀

) + 1 = 𝛼.

This completes the proof. □

Theorem 2 states that the query 𝑞 selected by Algorithm 1 sat-

isfies E[𝜆(𝑞,𝑋 ; 𝑧,Q) | Q] ≥ 𝛼 . Note that the stopping time of

Algorithm 1 (i.e., the number of queries) is uncertain. In the follow-

ing, we build a key relation for characterizing 𝜆(𝑞,𝑋 ; 𝑧,Q) based
on Theorem 2 that is useful for deriving the query complexity of

our algorithm.

Lemma 2. The query 𝑞 selected on top of Q by the greedy strategy
of Algorithm 1 satisfies that

2E[ln 𝜆(𝑞,𝑋 ; 𝑧,Q) | Q] ≥ ln𝛼. (20)

Proof. In what follows, we will show that for any query 𝑞 on

top of Q, it holds that
2E[ln 𝜆(𝑞,𝑋 ; 𝑧,Q) | Q] ≥ lnE[𝜆(𝑞,𝑋 ; 𝑧,Q) | Q] .

Combining it with Theorem 2 concludes the lemma.

Indeed, by definition we have

2E[ln 𝜆(𝑞,𝑋 ; 𝑧,Q) | Q]

= ln

((
1 − 𝑥

(1 − 𝑥)𝑦 + 𝑥 (1 − 𝑦)

)
2(1−𝑥) (𝑥

𝑥𝑦 + (1 − 𝑥) (1 − 𝑦)

)
2𝑥

)
,

lnE[𝜆(𝑞,𝑋 ; 𝑧,Q) | Q]

= ln

(
(1 − 𝑥)2

(1 − 𝑥)𝑦 + 𝑥 (1 − 𝑦) +
𝑥2

𝑥𝑦 + (1 − 𝑥) (1 − 𝑦)

)
,

where 𝑥 = 𝑒𝑞 and 𝑦 = P(𝑇𝑞 | Q) (resp. 𝑦 = P(𝑇∁
𝑞 | Q)) if 𝑧 ∈ 𝑇𝑞

(resp. 𝑧 ∈ 𝑇∁
𝑞). Now, let

𝐹 (𝑥,𝑦) :=

(
1−𝑥

(1−𝑥)𝑦+𝑥 (1−𝑦)

)
2(1−𝑥) (

𝑥
𝑥𝑦+(1−𝑥) (1−𝑦)

)
2𝑥

(1−𝑥)2
(1−𝑥)𝑦+𝑥 (1−𝑦) +

𝑥2

𝑥𝑦+(1−𝑥) (1−𝑦)

=
(1 − 𝑥)2 (𝑥

1−𝑥)
2𝑥 (𝑠

1−𝑠)
2𝑥−1

(1 − 𝑥)2 − (1 − 2𝑥)𝑠
,

where 𝑠 = 𝑥 + (1 − 2𝑥)𝑦 ∈ [0, 1]. It thus suffices to prove that

𝐹 (𝑥,𝑦) ≥ 1 for any 𝑥,𝑦 ∈ [0, 1]. Taking the partial derivative of

𝐹 (𝑥,𝑦) with respect to 𝑦 yields

𝜕𝐹 (𝑥,𝑦)
𝜕𝑦

=
(1 − 𝑥)2 (𝑥

1−𝑥)
2𝑥(

(1 − 𝑥)2 − (1 − 2𝑥)𝑠
)
2
·
(1 − 2𝑥)2 (𝑠

1−𝑠)
2𝑥−2

(1 − 𝑠)2

·
(
−(1 − 𝑥)2 + (1 − 2𝑥)𝑠 + (1 − 𝑠)𝑠

)
= −
(1 − 𝑥)2 (1 − 2𝑥)2 (1 − 𝑥 − 𝑠)2

(
𝑥𝑠

(1−𝑥) (1−𝑠)
)
2𝑥(

(1 − 𝑥)2 − (1 − 2𝑥)𝑠
)
2

𝑠2
≤ 0.

Therefore, 𝐹 (𝑥,𝑦) ≥ 𝐹 (𝑥, 1) = 1, which completes the proof. □

Noisy Interactive Graph Search KDD ’22, August 14–18, 2022, Washington DC

Inspired by Wald’s equation [39] that simplifies the calculation

of the expected value of the cumulative sum of a random number

of random quantities, we establish upper bounds on the stopping

time of Algorithm 1 on the basis of Lemma 2.

Theorem 3. For the OIGS problem, given that the target node
is 𝑧, Algorithm 1 asks at most 2 log𝛼 (1

P(𝑧)) queries in expectation.
Moreover, the expected number of queries involved in Algorithm 1 is
at most 2 log𝛼 (𝑛), where the expectation is taken over all random-
ness, including the randomness of 𝑧 following the prior probability
distribution P(𝑧).

Proof. Let Q𝑖 be the information collected after 𝑖 rounds and

𝑌𝑖 := 𝜆(𝑞,𝑋 ; 𝑧,Q𝑖−1) be a random variable indicating the multiplier

in the 𝑖-th round. Let 𝜏𝑧 be the stopping time of Algorithm 1 given

that the target node is 𝑧. Then,

P(𝑧 | Q𝜏𝑧) = P(𝑧) ·
𝜏𝑧∏
𝑖=1

𝑌𝑖 .

Thus,

𝜏𝑧∑︁
𝑖=1

ln𝑌𝑖 = ln

(
P(𝑧 | Q𝜏𝑧)
P(𝑧)

)
≤ ln

(
1

P(𝑧)

)
. (21)

Meanwhile, denote by 𝟙{𝜏𝑧≥𝑖 } the indicator random variable for the

event {𝜏𝑧 ≥ 𝑖}, i.e., 𝟙{𝜏𝑧≥𝑖 } = 1 if 𝜏𝑧 ≥ 𝑖 and otherwise 𝟙{𝜏𝑧≥𝑖 } = 0.

Then, we have

𝜏𝑧∑︁
𝑖=1

ln𝑌𝑖 =

∞∑︁
𝑖=1

(
ln𝑌𝑖 · 𝟙{𝜏𝑧≥𝑖 }

)
.

Taking the expectation for both sides with respect to 𝑌𝑖 ’s and 𝜏𝑧
yields

E

[
𝜏𝑧∑︁
𝑖=1

ln𝑌𝑖

]
=

∞∑︁
𝑖=1

E
[
ln𝑌𝑖 · 𝟙{𝜏𝑧≥𝑖 }

]
=

∞∑︁
𝑖=1

E
[
E

[
ln𝑌𝑖 · 𝟙{𝜏𝑧≥𝑖 } | Q𝑖−1

]]
=

∞∑︁
𝑖=1

E
[
E

[
ln𝑌𝑖 | Q𝑖−1, 𝟙{𝜏𝑧≥𝑖 }

]
· 𝟙{𝜏𝑧≥𝑖 }

]
≥
∞∑︁
𝑖=1

E
[
ln𝛼
2
· 𝟙{𝜏𝑧≥𝑖 }

]
= ln𝛼

2
·
∞∑︁
𝑖=1

P(𝜏𝑧 ≥ 𝑖)

= ln𝛼
2
· E [𝜏𝑧] ,

where the inequality is by Lemma 2. Combining it with (21) imme-

diately yields the first part that

E [𝜏𝑧] ≤ 2 log𝛼 (1

P(𝑧)) .

In addition, taking the expectation over the above inequality

with respect to the randomness of 𝑧 yields

E [E[𝜏𝑧]] ≤ E
[
2 log𝛼 (1

P(𝑧))
]
≤ 2 log𝛼

(
E

[
1

P(𝑧)

])
= 2 log𝛼 (𝑛),

where the second inequality is by Jensen’s inequality [17] as log𝛼 (·)
is a concave function. This completes the proof. □

We can infer from Theorem 3 that it is likely to require more

queries to locate the target when (i) the failure threshold, i.e., 𝜀, is

stringent, (ii) the noise level, i.e., 𝑒∗, is large, (iii) the hierarchy has

some bad structure, e.g., the maximum degree 𝑑 is large, and/or (iv)

a rare object occurs, i.e., the prior probability P(𝑧) of the target 𝑧 is
low.

Interestingly, the expected number of queries (over the random-

ness of the target) is near-optimal up to a multiplicative factor of

2/log
2
(𝛼), as the lower bound is log

2
(𝑛). This lower bound can be

seen by considering a special case of the OIGS problem in which the

tree is just an ordered list and every error probability is zero [19].

5 EXPERIMENT
In this section, we conduct experiments to evaluate the performance

of our method. The key metrics for evaluating an algorithm are its

cost and accuracy. All the experiments are carried out on a machine

with an Intel i7-7700 CPU and 32GB RAM. All the algorithms are

implemented in Python.

5.1 Experiment Setting
Datasets. Following the previous work [8, 23, 35], we use the same

two real-world datasets considered by them in our experiments:

• Amazon
1
[14]. This dataset includes 13,886,889 products sold

at Amazon. The hierarchy of the products has a tree structure

with 29,240 nodes.

• ImageNet
2
[10]. This is a large-scale image dataset using the

structure ofWordNet [25], consisting of 12,656,970 images. The

hierarchy of this dataset is a directed acyclic graph with 27,714

nodes. Following previous work [47], we extract a spanning

tree from the original input hierarchy.

We count the number of products/images for each node in the

hierarchy (i.e., label) and normalize it by the total amount as its

prior probability. We randomly select 10,000 products/images as

the test data to be labeled.

Metrics. The main metrics here are cost, i.e., the expected number

of queries, and accuracy, i.e., the proportion of objects that are

correctly labeled.

Competing Algorithms. We consider two baselines for the vari-

ants of IGS, including the heavy-path-based binary search method

proposed by Tao et al. [35], referred to as WIGS, and the greedy-

based method proposed by Cong et al. [8], referred to as AIGS. We

note that bothWIGS and AIGS do not consider query noise, so they
will return a wrong result if any query receives a wrong answer

during the search progress. To adapt them to the OIGS problem,

we incorporate the majority voting technique widely adopted in

crowdsouring platforms [35, 46] into these algorithms. That is, we

ask each query multiple times and take the most frequent answer

as the answer elected for this query. We refer to the resultant algo-

rithms as WIGS-𝑥 and AIGS-𝑥 , where 𝑥 is the number of repeated

times of each query. For example, theWIGS-5 algorithm selects the

same query nodes asWIGS, and sends each query to 5 workers and

accepts the majority answer (i.e., from at least 3 workers).

1
https://jmcauley.ucsd.edu/data/amazon/links.html

2
https://www.image-net.org/api/xml/structure_released.xml

https://jmcauley.ucsd.edu/data/amazon/links.html
https://www.image-net.org/api/xml/structure_released.xml

KDD ’22, August 14–18, 2022, Washington DC Qianhao Cong, Jing Tang, Kai Han, Yuming Huang, Lei Chen, and Yeow Meng Chee

NI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-9

algorithms

0
60

120
180
240
300

av
er

ag
e

co
st accuracy cost

OI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-90
60

120
180
240
300

av
er

ag
e

co
st

0.0
0.2
0.4
0.6
0.8
1.0

ac
cu

ra
cy

(a) noise-level=0.1

OI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-90
60

120
180
240
300

av
er

ag
e

co
st

0.0
0.2
0.4
0.6
0.8
1.0

ac
cu

ra
cy

(b) noise-level=0.2

OI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-90
60

120
180
240
300

av
er

ag
e

co
st

0.0
0.2
0.4
0.6
0.8
1.0

ac
cu

ra
cy

(c) noise-level=0.3

OI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-90
60

120
180
240
300

av
er

ag
e

co
st

0.0
0.2
0.4
0.6
0.8
1.0

ac
cu

ra
cy

(d) noise-level=0.4

Figure 2: Performance on the Amazon Dataset

NI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-9

algorithms

0
60

120
180
240
300

av
er

ag
e

co
st accuracy cost

OI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-90
60

120
180
240
300

av
er

ag
e

co
st

0.0
0.2
0.4
0.6
0.8
1.0

ac
cu

ra
cy

(a) noise-level=0.1

OI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-90
60

120
180
240
300

av
er

ag
e

co
st

0.0
0.2
0.4
0.6
0.8
1.0

ac
cu

ra
cy

(b) noise-level=0.2
OI

GS
-0

.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-90
60

120
180
240
300

av
er

ag
e

co
st

0.0
0.2
0.4
0.6
0.8
1.0

ac
cu

ra
cy

(c) noise-level=0.3

OI
GS

-0
.9

W
IG

S-
1

AI
GS

-1

W
IG

S-
5

AI
GS

-5

W
IG

S-
9

AI
GS

-90
60

120
180
240
300

av
er

ag
e

co
st

0.0
0.2
0.4
0.6
0.8
1.0

ac
cu

ra
cy

(d) noise-level=0.4

Figure 3: Performance on the ImageNet Dataset

0.
1

0.
2

0.
3

0.
4

noise level

0

60

120

av
er

ag
e

co
st OIGS-0.6 OIGS-0.7 OIGS-0.8 OIGS-0.9

0.
1

0.
2

0.
3

0.
4

noise level

0.6

0.8

1.0

ac
cu

ra
cy

(a) Amazon

0.
1

0.
2

0.
3

0.
4

noise level

0.6

0.8

1.0

ac
cu

ra
cy

(b) ImageNet

Figure 4: Accuracy of OIGS with Different Threshold

For our OIGS algorithm, the threshold of failure probability 𝜀

introduces a tradeoff between cost and accuracy. That is, decreasing

𝜀 can improve accuracy but incur a higher cost. For ease of reference,

we denote OIGS-𝑦 as OIGS with a success probability of at least

𝑦 = 1 − 𝜀. For example, OIGS-0.9 will stop as long as the maximum

posterior probability is no less than 0.9.

Parameter Setting. For the noise setting, we consider four different
noise levels, i.e., 𝑒𝑚𝑎𝑥 = 0.1, 0.2, 0.3, 0.4, where the error rate of each

node is generated by a random number uniformly distributed in

the range of [0, 𝑒𝑚𝑎𝑥]. By default, we set the algorithmic parameter

𝜀 = 0.1 for our algorithm, i.e., OIGS-0.9. We shall carry out an

experiment to test the effect of 𝜀. For the baseline WIGS-𝑥 and

AIGS-𝑥 algorithms, we set three different values of 𝑥 , i.e., 𝑥 = 1, 5, 9.

5.2 Experiment Result
Figure 2 shows the average cost and accuracy on the Amazon

dataset. As can be seen from Figure 2(a), when the noise level 𝑒𝑚𝑎𝑥 is

as low as 0.1, our OIGS-0.9 algorithm achieves an accuracy of 0.948

using a cost of 26.68, whereas bothWIGS and AIGS either return

very poor results in terms of accuracy (i.e., less than 0.25 and 0.4

0.
1

0.
2

0.
3

0.
4

noise level

0

60

120

av
er

ag
e

co
st OIGS-0.6 OIGS-0.7 OIGS-0.8 OIGS-0.9

0.
1

0.
2

0.
3

0.
4
noise level

0

60

120

av
er

ag
e

co
st

(a) Amazon

0.
1

0.
2

0.
3

0.
4

noise level

0

60

120

av
er

ag
e

co
st

(b) ImageNet

Figure 5: Cost of OIGS with Different Threshold

by WIGS-1 and AIGS-1, respectively) or incur significant overhead
in terms of cost with comparable accuracy (e.g., 5.86 and 3.96 times

higher costs by WIGS-5 and AIGS-5, respectively). Figures 2(b)–
2(d) show that when the query responses become more noisy, to

ensure the accuracy, our OIGS-0.9 needs to ask more questions

but still notably fewer than WIGS-5/9 and AIGS-5/9. Meanwhile,

we observe that the accuracy of WIGS-1/5/9 and AIGS-1/5/9 drops
quickly when the noise level increases. In particular, when the noise

level is 0.4 as shown in Figure 2(d), the accuracy of WIGS-9 and
AIGS-9 is less than 0.2 and 0.4, respectively, not to mention WIGS-
1/5 and AIGS-1/5. The results on the ImageNet dataset, as shown in

Figure 3, are quite similar. These experiment results demonstrate

the superiority of our OIGS method, since OIGS only asks a small

number of questions to identify the label for each object while

consistently guaranteeing high accuracy, no matter how noisy the

crowdsourcing platform is (which is unachievable by the baselines).

Figure 4 show the accuracy of our OIGS method under different

threshold settings of 1 − 𝜀 = 0.6, 0.7, 0.8, 0.9. The accuracy of our

algorithm, although exceeding the corresponding threshold setting

of 1 − 𝜀, deteriorates when higher failure probability 𝜀 is allowed.

We also observe that when the threshold 1 − 𝜀 is low, the accuracy

Noisy Interactive Graph Search KDD ’22, August 14–18, 2022, Washington DC

of our algorithm, e.g., OIGS-0.6, decreases more quickly. To explain,

the label returned byOIGS-0.6 is more uncertain than that byOIGS-
0.9, and thus noise is more harmful to OIGS-0.6 than to OIGS-0.9.
Figure 5 shows the average cost of our OIGS algorithm when the

threshold 1 − 𝜀 varies from 0.6 to 0.9. It can be seen that more

queries are needed with the increasing of (i) threshold 1 − 𝜀 and/or
(ii) noise level 𝑒𝑚𝑎𝑥 .

6 RELATEDWORK
Interactive Graph Search. Interactive graph search (IGS) was

firstly proposed by Tao et al. [35]. Prior to it, Parameswaran et al.

[31] studied an offline version of IGS that proposes all queries in

one round without any interactions. Recently, several variants of

IGS have been studied in the literature [8, 23, 47]. Li et al. [23] aimed

to locate the target node using fewest rounds of multiple-choice

queries. Zhu et al. [47] attempted to findmultiple targets subject to a

budget constraint on the number of queries allowed. Cong et al. [8]

studied an average-case IGS problem that minimizes the expected

cost. To our knowledge, all these existing proposals assumed that

the queries are answered by a perfect oracle without making errors,

which is unrealistic as the answers are usually noisy in a practical

crowdsourcing platform. In this paper, we investigate the noisy

variant, namely OIGS, that minimizes the query complexity while

ensuring accuracy.

Poset and Decision Tree. From the theoretical perspective, our

work is highly related to the search in partially-ordered set (poset)

problem [6] and the decision tree problem [4]. Cong et al. [8]

showed that IGS can be mapped to the aforementioned two prob-

lems. In particular, for the worst-case IGS problem [35], the optimal

policy can be constructed in linear time if the given hierarchy

has a tree structure [3, 27, 29], while there exists an
𝑂 (log(𝑛))

𝑂 (log log(𝑛)) -
approximate algorithm if the input hierarchy is a directed acyclic

graph (DAG) [11]. For the average-case IGS problem [8], the simple

greedy policy has an approximate ratio of
1+
√
5

2
and there exists

a fully polynomial time approximation scheme based on dynamic

programming on a tree hierarchy [7]; while on a DAG hierarchy,

the rounded greedy algorithm can achieve an approximation ratio

of𝑂 (log(𝑛)) [4] and no ratios better than 𝑜 (log(𝑛)) can be achieved
unless P=NP [6]. Again, noise is not considered in these results.

Nowak [28] studied the noisy decision tree problem in the domain

of machine learning. However, this work did not provide a solution

to achieve a predefined accuracy and their theoretical guarantee

requires that the input has a special structure (called as neighbor-

hood) which is not satisfied in our problem. Therefore, it is unclear

whether their algorithm can be applied to our OIGS problem with

strong theoretical guarantees.

Human-Based Computation. Human-based computation has

been studied for decades to address the problems that are hard

to solve totally algorithmically, such as building hierarchy [5, 34],

entity resolution [37, 38, 40, 42], object categorization [23, 47], data

filtering [30, 32], data labeling [10], SQL-like query processing

[9, 18, 36], and data cleaning [44]. Problems in human-based com-

putation have attracted considerable attention in the database and

data mining areas [2, 15, 20, 22, 24, 41, 48]. Among the above prob-

lems, the crowd-based filtering problem [30, 32] is closest to our

work, which aims to filter objects based on a set of properties with

the minimum cost while ensuring accuracy. The key difference is

that they categorize all the objects into two classes only (i.e., a total

of two labels) and thus their developments cannot be applied to our

general scenario where the object categories form a tree hierarchy.

7 CONCLUSION
In this paper, we have studied the noisy interactive graph search

problem and proposed a cost-effective algorithm with provable the-

oretical guarantees. Our algorithm is expected to stop in 2 log𝛼 (𝑛)
steps to identify a target node with high accuracy, where 𝑛 is the

number of nodes in the categorization hierarchy and 𝛼 is a param-

eter related to the accuracy requirement, the noise level, and the

structure of the hierarchy. Using extensive experiments on two real

datasets, we have shown that our approach can outperform the

state-of-the-art algorithms.

ACKNOWLEDGMENTS
Jing Tang’s work is partially supported by HKUST(GZ) under

a Startup Grant. Lei Chen’s work is partially supported by Na-

tional Key Research and Development Program of China Grant

No. 2018AAA0101100, the Hong Kong RGC GRF Project 16209519,

CRF Project C6030-18G, C1031-18G, C5026-18G, AOE Project

AoE/E-603/18, RIF Project R6020-19, Theme-based project TRS T41-

603/20R, China NSFC No. 61729201, Guangdong Basic and Applied

Basic Research Foundation 2019B151530001, Hong Kong ITC ITF

grants ITS/044/18FX and ITS/470/18FX, Microsoft Research Asia

Collaborative Research Grant, HKUST-NAVER/LINE AI Lab, Didi-

HKUST joint research lab, HKUST-Webank joint research lab grants.

Kai Han’s work is partially supported by National Natural Science

Foundation of China (NSFC) under Grant No. 62172384 and by

Alibaba Group through Alibaba Innovative Research Program.

REFERENCES
[1] Yael Amsterdamer, Yael Grossman, Tova Milo, and Pierre Senellart. 2013. Crowd

Mining. In Proc. ACM SIGMOD. 241–252.
[2] Yukino Baba andHisashi Kashima. 2013. Statistical Quality Estimation for General

Crowdsourcing Tasks. In Proc. ACM SIGKDD. 554–562.
[3] Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. 1999. Optimal Search in Trees.

SIAM J. Comput. 28, 6 (1999), 2090–2102.
[4] Venkatesan T Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi,

and Mukesh Mohania. 2007. Decision Trees for Entity Identification: Approxima-

tion Algorithms and Hardness Results. In Proc. PODS. 53–62.
[5] Lydia B Chilton, Greg Little, Darren Edge, Daniel S Weld, and James A Landay.

2013. Cascade: Crowdsourcing Taxonomy Creation. In Proc. ACM SIGCHI. 1999–
2008.

[6] Ferdinando Cicalese, Tobias Jacobs, Eduardo Laber, andMarcoMolinaro. 2011. On

the Complexity of Searching in Trees and Partially Ordered Structures. Theoretical
Computer Science 412, 50 (2011), 6879–6896.

[7] Ferdinando Cicalese, Tobias Jacobs, Eduardo Laber, andMarcoMolinaro. 2014. Im-

proved Approximation Algorithms for the Average-Case Tree Searching Problem.

Algorithmica 68, 4 (2014), 1045–1074.
[8] Qianhao Cong, Jing Tang, Yuming Huang, Lei Chen, and Yeow Meng Chee.

2022. Cost-Effective Algorithms for Average-Case Interactive Graph Search.

arXiv:2201.07944 [cs.DB]

[9] Susan B Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. 2013. Using

the Crowd for Top-k and Group-by Queries. In Proc. ICDT. 225–236.
[10] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A Large-scale Hierarchical Image Database. In Proc. IEEE CVPR. 248–255.
[11] Dariusz Dereniowski. 2008. Edge Ranking and Searching in Partial Orders.

Discrete Applied Mathematics 156, 13 (2008), 2493–2500.
[12] Jing Gao, Qi Li, Bo Zhao, Wei Fan, and Jiawei Han. 2016. Mining Reliable

Information from Passively and Actively Crowdsourced Data. In Proc. ACM
SIGKDD. 2121–2122.

https://arxiv.org/abs/2201.07944

KDD ’22, August 14–18, 2022, Washington DC Qianhao Cong, Jing Tang, Kai Han, Yuming Huang, Lei Chen, and Yeow Meng Chee

[13] Stephen Guo, Aditya Parameswaran, and Hector Garcia-Molina. 2012. So Who

Won? Dynamic Max DiscoveryWith the Crowd. In Proc. ACM SIGMOD. 385–396.
[14] Ruining He and Julian McAuley. 2016. Ups and Downs: Modeling the Visual

Evolution of Fashion Trends with One-class Collaborative Filtering. In Proc.
WWW. 507–517.

[15] Mengdi Huai, Di Wang, Chenglin Miao, Jinhui Xu, and Aidong Zhang. 2019.

Privacy-aware Synthesizing for Crowdsourced Data. In Proc IJCAI. 2542–2548.
[16] Chao Huang, Xian Wu, and Dong Wang. 2016. Crowdsourcing-based Urban

Anomaly Prediction System for Smart Cities. In Proc ACM CIKM. 1969–1972.

[17] Johan Jensen. 1906. Sur les Fonctions Convexes et les Inégalités entre les Valeurs

Moyennes. Acta Mathematica 30, 1 (1906), 175–193.
[18] Adam Marcus Eugene Wu David Karger and Samuel Madden Robert Miller. 2011.

Human-powered Sorts and Joins. Proc. VLDB Endowment 5, 1 (2011), 13–24.
[19] Donald E. Knuth. 1998. The Art of Computer Programming, Volume 3: (2nd Ed.)

Sorting and Searching.
[20] Shao-Yuan Li, Yuan Jiang, Nitesh V Chawla, and Zhi-Hua Zhou. 2018. Multi-label

Learning from Crowds. IEEE Transactions on Knowledge and Data Engineering
31, 7 (2018), 1369–1382.

[21] Xinke Li, Chongshou Li, Zekun Tong, Andrew Lim, Junsong Yuan, Yuwei Wu,

Jing Tang, and Raymond Huang. 2020. Campus3d: A Photogrammetry Point

Cloud Benchmark for Hierarchical Understanding of Outdoor Scene. In Proc.
ACM MM. 238–246.

[22] Yanying Li, Haipei Sun, and Wendy Hui Wang. 2020. Towards Fair Truth Discov-

ery from Biased Crowdsourced Answers. In Proc. ACM SIGKDD. 599–607.
[23] Yuanbing Li, Xian Wu, Yifei Jin, Jian Li, and Guoliang Li. 2020. Efficient Algo-

rithms for Crowd-Aided Categorization. Proc. VLDB Endowment 13, 8 (2020),

1221–1233.

[24] Fenglong Ma, Yaliang Li, Qi Li, Minghui Qiu, Jing Gao, Shi Zhi, Lu Su, Bo Zhao,

Heng Ji, and Jiawei Han. 2015. Faitcrowd: Fine Grained Truth Discovery for

Crowdsourced Data Aggregation. In Proc. ACM SIGKDD. 745–754.
[25] George A Miller. 1998. WordNet: An Electronic Lexical Database. MIT Press.

[26] Kaixiang Mo, Erheng Zhong, and Qiang Yang. 2013. Cross-task Crowdsourcing.

In Proc. ACM SIGKDD. 677–685.
[27] Shay Mozes, Krzysztof Onak, and Oren Weimann. 2008. Finding an Optimal Tree

Searching Strategy in Linear Time. In Proc. SODA. 1096–1105.
[28] Robert Nowak. 2009. Noisy Generalized Binary Search. In Proc. NeurIPS. 1366–

1374.

[29] Krzysztof Onak and Pawel Parys. 2006. Generalization of Binary Search: Search-

ing in Trees and Forest-like Partial Orders. In Proc. IEEE FOCS. 379–388.
[30] Aditya Parameswaran, Stephen Boyd, Hector Garcia-Molina, Ashish Gupta, Neok-

lis Polyzotis, and Jennifer Widom. 2014. Optimal Crowd-Powered Rating and

Filtering Algorithms. Proc. VLDB Endowment 7, 9 (2014), 685–696.

[31] Aditya Parameswaran, Anish Das Sarma, Hector Garcia-Molina, Neoklis Polyzo-

tis, and Jennifer Widom. 2011. Human-Assisted Graph Search: It’s Okay to Ask

Questions. Proc. VLDB Endowment 4, 5 (2011), 267–278.
[32] Aditya G Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Poly-

zotis, Aditya Ramesh, and Jennifer Widom. 2012. Crowdscreen: Algorithms for

Filtering Data with Humans. In Proc. ACM SIGMOD. 361–372.
[33] Hesam Salehian, Patrick Howell, and Chul Lee. 2017. Matching Restaurant Menus

to Crowdsourced Food Data: A Scalable Machine Learning Approach. In Proc.
ACM SIGKDD. 2001–2009.

[34] Yuyin Sun, Adish Singla, Dieter Fox, and Andreas Krause. 2015. Building hierar-

chies of concepts via crowdsourcing. In Proc. IJCAI. 844–853.
[35] Yufei Tao, Yuanbing Li, and Guoliang Li. 2019. Interactive Graph Search. In Proc.

ACM SIGMOD. 1393–1410.
[36] Petros Venetis, Hector Garcia-Molina, Kerui Huang, and Neoklis Polyzotis. 2012.

Max Algorithms in Crowdsourcing Environments. In Proc. WWW. 989–998.

[37] Vasilis Verroios and Hector Garcia-Molina. 2015. Entity Resolution with Crowd

Rrrors. In Proc. IEEE ICDE. 219–230.
[38] Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. 2014. Crowdsourcing Algo-

rithms for Entity Resolution. Proc. VLDB Endowment 7, 12 (2014), 1071–1082.
[39] Abraham Wald. 1947. Sequential Analysis. Wiley.

[40] JiannanWang, Tim Kraska, Michael J Franklin, and Jianhua Feng. 2012. CrowdER:

Crowdsourcing Entity Resolution. Proc. VLDB Endowment 5, 11 (2012), 1483–
1494.

[41] YueWang, KeWang, and ChunyanMiao. 2020. Truth Discovery Against Strategic

Sybil Attack in Crowdsourcing. In Proc. ACM SIGKDD. 95–104.
[42] Steven Euijong Whang, Peter Lofgren, and Hector Garcia-Molina. 2013. Question

Selection for Crowd Entity Resolution. Proc. VLDB Endowment 6, 6 (2013), 349–
360.

[43] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier Movellan, and Paul Ruvolo.

2009. Whose Vote Should Count More: Optimal Integration of Labels from

Labelers of Unknown Expertise. In Advances in NeurIPS, Vol. 22. 2035–2043.
[44] Chen Jason Zhang, Lei Chen, Yongxin Tong, and Zheng Liu. 2015. Cleaning

Uncertain Data with a Noisy Crowd. In Proc. IEEE ICDE. 6–17.
[45] Jing Zhang and Xindong Wu. 2018. Multi-label Inference for Crowdsourcing. In

Proc. ACM SIGKDD. 2738–2747.
[46] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng. 2017.

Truth Inference in Crowdsourcing: Is the Problem Solved? Proc. VLDB Endowment
10, 5 (2017), 541–552.

[47] Xuliang Zhu, Xin Huang, Byron Choi, Jiaxin Jiang, Zhaonian Zou, and Jianliang

Xu. 2021. Budget Constrained Interactive Search for Multiple Targets. Proc. VLDB
Endowment 14, 6 (2021), 890–902.

[48] Honglei Zhuang, Aditya Parameswaran, Dan Roth, and Jiawei Han. 2015. Debi-

asing Crowdsourced Batches. In Proc. ACM SIGKDD. 1593–1602.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Target Node Inference
	3.1 Computing Posterior Probability
	3.2 Monotonicity of Posterior Probability

	4 Query Selection
	4.1 Greedy Strategy
	4.2 Theoretical Guarantees

	5 Experiment
	5.1 Experiment Setting
	5.2 Experiment Result

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

